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The clastic constants 0' = (On - 012)/2, O'~1 and 0;: = 0~1 - 0' + 044 of lithium 
single crystals were measured in the temperature interval 85 to 300 oK and the pressure 
intel'\'aJ 0.001 to 3.5 kbar. Of special interest is the behavior of 0' near the martensiti c 
transformation (which at 1 bar occurs near 78 OK) to determine the appli cabi li ty of either 
a bulk or a microscopic instability criteria to the transformation. A pulsed ultrasonic inter
ferometer was employed to measure the transit times of the lithium samples from which 
the elastic constants were calculated. The resulting data indicate that the elastic constants 
do not change in any drastic manner and are contim,ously increasing as the temperature 
is lowered. In addition, all pressure derivatives remain positive to the lowest temperatLlres 
and highest pressm'es studied. Comparisons of the presently reported quantities with those 
previously measured and theoretically calculated are made. 

Die elastischen Konstanten 0' = (On - 012)/2, O{1 und O~ = O~l - 0' + 044 von 
Lithium-Einkristallen wurden im Temperaturbereich von 85 bis 300 oK und im Druckinter
vall von 0,001 bis 3,5 kbar gemessen. Von besonderem Interesse ist das Verhalten von 0' 
in del' Nahe des MartensiWbergangs (del' bei 1 bar in del' Nahe von 78 oK auftritt), um die 
Anwendbarkeit von entweder Volumen- oder mikroskopischen Instabilitatskriterien fur den 
Dbergang zu bestimmen. Fur die Messung del' Ubergangszeit del' Lithiumproben, von 
den en die elastischen Konstanten bel'ecbnet wUl'den, wlll'de ein Ultrascball-Impulsinter
ferometer benutzt. Die erhaltenen Ergebnisse zeigen, claB die elastischen Konstanten sich 
in keiner 'Weise dl'astiRch andel'n und daB sie kontinuierlich ansteigen, wenn clie Tempera
tlU' erniedrigt wird. Darilber hinaus bleiben aUe DrLlckabIeitungen positiv bis zu den nied
rigsten untersuchten Temperaturen und hiichsten DrllCken. Es wird ein Vergleich del' 
publizierten \Verte mit friiher gemessenen llnd theorctisch bm'echneten durchgefilhrt. 

1. Introduction 

In this introduction we discuss, in order, the mal'tensitic transformation in 
lithium, the bulk elastic instability criteria, Zener's proposed mechanism, and 
an elastic instability criteria applicable to "bad" crystal material such as dis
locations. Finally, we briefly discuss the calculation of elastic constants. 

1.1 Martel/site t1·CIIISj01"111CltiOU 

As a result of investigations into the physical properties of the alkali metals 
at low temperatures, lithium and sodium were found to undergo martensitic
type structural transformations at 78 and 35 oK, respectively [1 to 3]. No trans
formation was observed in potassium, rubidium, or cesium [2, 4]. Further X-ray 
research (4] revealed that the high temperature body-centered cubic (b.c.c.) 
structures of lithium and sodium transformed, upon cooling through the trans
formation temperature (Ms), to highly faulted hexagonal closed-packed (h.c.p.) 
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structures with a nearly ideal c-a ratio. Upon cold working at temperatures 
below M s, lithium was found to undergo yet another transformation to a faulted 
face-centered cubic (I.c.c.) structure [1, 4, 5]. 

Gugan and Dugdale [6] determined the pressure variation of Ms to be 
+25 °K/kbar to 2 kbar pressure, thus inclicating that hydrostatic pressure 
affects transformation characteristics. The purpose of this research was to 
investigate the variation of the elastic constants of lithium 1) near (but above) 
M s as a function of pressure. Of particular interest were derivatives of C', 
namely dC'/dT at p ressure, to deter~ine the applicability of the bulk elastic 
instability hypothesis originally postulated by Zener [7, 8], and dC'/dP at tem
peratures near M s, to test a microscopic elastic instability hypothesis cliscussed 
herein. 

The martensitic transformation is a solid state phenomenon which does not 
necessarily involve diffusion, but appears to involve many thousands of atoms 
which move cooperatively with a velocity of the same order as the velocity of 
sound in the crystal. The lithium transformation is in many respects similar to 
the characteristic transformation discussed in detail in the literature [9 to 17]. 
Of the 7 characteristics listed by Christian [17], only the stipulation of revers
ibility does not apply to lithium; that is, when a crystal is reconverted from 
low-temperature phase to high-temperature phase, in the case of lithium the 
original shape and orientation are not regained. When this type of behaviour 
has been observed in iron alloys, it is usually attributable to the presence of 
a higher concentration of the alloying element at the grain boundaries. This 
segregation effects a pinning of the boundaries which do not recede when the 
temperature is raised. The boundaries then exist although the material within 
them has transformed to the original phase. 

1.2 Macroscopic elastic instability 

The strain energy of a crystal is positive for any small deformation if the 
elastic constant matrix is positive definite. For a cubic crystal this reduces to 
C44 > 0, C' > 0, Cn > 0, and B > 0. Should anyone of these relations not be 
satisfied, the crystal is said to have a macroscopic elastic instability. Thus if 
C' < 0, a (110) [110] shear would spontaneously occur. Zener [7, 8] suggested 
that such a situation was likely in certain b.c.c. metals, e.g. ~-brass. In the 
alkali metals C' ~ 044 at room temperature [9]; moreover lithium and sodium 
do transform to closest packed structures. 

1.3 Mic1'oscopic elastic 'il1stability 

It is clear from the work of others [18, 19] and the present work that no macro
scopic instability exists at atmospheric pressure at the transformation temper
ature (inclucling temperatures above and below). It is, however, conceivable 
that in regions of the solid where the packing is not characteristic of the perfect 
b.c.c. crystal and in which adclitional stress may be present, elastic instabilities 
may exist. (An example of such a region is a grain boundary.) We call this an 

1) All elastic constants shown herein are adiabatic unless otherwise indicated. The adia
batic and isothermal values of the shear constants are equal while longitudinal wave con
stants are not. Thus On (longitudinal constant in 100 direction), B (bulk modulus) and 
0,. (longitudinal constant in no direction) have either T (isothermal) or S (adiabatic) 
superscript, the S superscript implied if none is written. 
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imperfection elastic instability. When the crystal is cooled to below the equi
librium transformation temperature, these regions (which were previously trans
formed) propagate through the crystal, transforming the entire crystal to the 
closest packed phase. As an example, consider the core of a dislocation. Usually 
there is a dilatation of two atomic volumes per atom length of dislocation. 
A crude model assumes that linear elasticity describes the stress field of the 
dislocation which is postulated to be hollow. The stress field a rises from the 
rigid displacement and the presence of an in ternal pressure P in the cylindrical 
core. If P = B j6, this model leads to the expected dilatation. For lithium the 
quant,ity B j6 represents a pressure of approximately 22 kbar. Although C' at 
P = 0 is not zero , there exists the possibility that dC' jdP is negative so that C' 
might in fact be zero at the pressure assumed to be present in the core. 

1.4 'l'lle01'eticlIt pl'edictiollS oj ellis tic {"oJ/stemts 

The pioneering work in the area of calculating the elastic properties of metals 
was performed in the mid-thirties by Wigner and Seitz [20 to 22], Bardeen [23] 
and Fuchs [24]. The latter approach yielded elastic constants other than the 
bulk modulus, and has been varied [25 to 2S] to explain discrepancies between 
observed and calculated data. Since the mid-sixties an approach applying pseu
dopotential theory [29 to 32] has enabled theorists to ca lculate various proper
ties, including the elastic constants, of thc simple metals and to predict elastic 
constant values which agree well with recently reported experimental results. 

In the present paper results are presented which show that a bulk instability 
does not exist. Moreover, the present evidence tends to rule out the imperfec
tion elastic instability mechanism (but not cOIllpletely). Finally, we show that 
the agreement between the measured pressure derivatives and theoretically 
predicted values at 0 OK is fa ir. 

2. J~xperil1lcll tal Techniques 

A pulsed ultrasonic interferometer was used to measure the elastic constants 
of the lithium single crystals. The pulse system is described in detail elsewhere 
[33], as are the temperature and pressure control systems [34]. 

The scarcity of single crystal data on lithium metal is primarily due to the 
difficulty of obtaining large single crystals. Bender [35] made unsuccessful at
tempts to grow lithium single crystals although he was able to obtain large 
single crystals of both sodium and potassium. Bowers et al. [36] reported a suc
cessfulmethod for producing small (0 .63 cm diameter) cyl indrical single crystals. 
The procedure originated by Nash and Smith [IS] was used to produce the 
crystals for the present research. 

The ultrasonic specimen preparation for lithium follows those procedures for 
sodium outlined by Martinson [33]. The etching and cleaning solutions used were 
anhydrous diethyl-ether and methyl alcohol , respectively. The final sample size 
was approximately (1.5 X 1.0 X 1.0) cm3• 

3. Data Analysis 

The analysis of the results of the experiments (frequencies at sets of T, P) 
was carried out in the following manner: 

1. The transit times were corrected to take into accolmt the presence of 
a transducer. 
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2. The length lo at temperature T and atmospheric pressure was computed 
from thermal expansion data. 

3. The length l at T , P was computed as described later. 
4. A least square analysis was then used at each temperature with 0 having 

the linear form 

dO l 0 = Olp =O.T + dP P. 
P=O.T 

The equation for the transit time is 

2. = n-t +p + kU;;l - /(1
), 

nP 

(1) 

(2) 

where 2. is the round trip transit time of the sample, In is the frequency at which 
interference occurs, n is an integer associated with the frequency In, p is the dif
ference between the number of round trips of the two pulses, k is the ratio of the 
transducer to sample acoustic impedances, and 10 is the free resonance frequency 
of the transducer. The elastic constant is calculated from the following formula: 

l2 
0= e .2' (3) 

where e and l are the sample density and length, respectively. The temperature 
and pressure variation of the resonance frequency of the transducer are taken 
from McSkimin and Andreatch [37] and the length change variation of the 
lithium sample with temperature is from Pearson [38]. Cook's analysis [39] was 
used to evaluate the length change of the sample resulting from the application 
of hydrostatic pressure. This involved the calculation of the conversion factor 
,1 at temperature and pressure. The specific heat data of Martin [40] was used in 
addition to Pearson's data to calculate ,1 as defined by 

{J2BST 
,1 = -

eOp , 
(4) 

where {J is the volume thermal expansion coefficient, 0 p is the heat capacity at 
constant pressure, BS is the adiabatic bulk modulus, and T is the absolute tem
perature. 

4. Results 

Transit time measurements were made which resulted in values of 

0' = (Ou - Od/2 , Of 1 , and O~ = Ofl - 0' + 044 , 

The values of 044, BS, and BT were calculated from the three measured constants 
using the well-known relations 

044 = O~ - Ofl + 0' , (5) 

(6) 
and 

I 
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Table 1 presents the results of the analysis 
of the data for C';1> and C~ and C' evaluated 
at 100 oK , as well as the constants C44 , and 
BS and Bl' which have been computed from 
the measured values. 

Two other sets of atmospheric ' pressure 
ultrasonic data are available [18, 19). These 
and the present absolute values evaluated 
at 100 oK are itemized in Table 2. 

Table 3 compares the results of three cal
culations (Fuchs [24] , Boffey [25], and Suzuki 
et al. [30]) with the three sets of absolute 
value data extrapolated to T = 0 oK. In the 
case of the N ash and Smith data, where only 
three temperature points were taken, the 
extrapolation is somewhat more uncertain 
than for either of the other two sets. 

Table 4 contains a summary of tempera
ture derivatives. The present data ag rees 
most often with that published by Slotwinsik 
and Trivisonno [19]. This would reasonably 
be the case as the number of points used to 
determine the slope in that data is large com
pared to the number of points for the Nash 
and Smith data . 

Swenson [41] , on the basi of direct 
PVT measurements, obtained a value of 
dBl' jdT = -5 X 10-2 kbarjdeg contra ted to 
the present value of - 6 X 10-2 kbarJdeg. 

The zero temperature extrapolated pres
sure derivatives are compared with those 
derived theoretically by Suzuki et al. [30] , 
in Table 5. The Suzuki data was calculated 
using a core radius value of 1.36 at. units. 
Using a value of 0.92 at. units the agreement 
between the calculated and experimental 
pressure derivatives is much better but the 
val ues of the calculated elastic constan ts 
a re changed greatly by this choice of core 
radius. 

Ta ble 6 compares the pressure derivatives 
of the shear constants C' and C44 given by 
Jain [27] with the present results. The 
agreement is very good. 

The values of Bf and (dBfldPh obtained 
by various method are summarized in 
Table 6. 

The shock values are obtained from Rice's 
[42] measured values of c and 8 in the rela-
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Table 2 
Values of elastic constants from various sources. 

Units of kbar, T = 100 oK, P = 0 kbar 

of! O~ 0' 0" B8 reference 

146.0 240.3 11.5 105.8 130.7 [18] 
143.5 239.4 11.0 107.3 128.8 [19] 
142.3 238.0 11.3 107.0 127.2 present paper 

Table 3 
Experimental and theoretical values of elastic constants *) from various sources. 

Units of 102 kbar, T = 0 OK, P = 0 kbar 

011 On 0' 044 B reference 

(calc) 1.53 2.69 0.17 1.33 1.30 [24] 
(calc) 1.50 2.54 0.12 1.16 1.34 [30] 
(calc) 0.11 1.11 [25] 
(exp) 1.54 2.55 0.119 1.13 1.38 [18] 
(exp) 1.47 2.49 0.112 1.13 1.32 [19] 
(exp) 1.46 2.48 0.116 1.14 1.31 present paper 

*) Adiabatic and isothermal elastic constants and bulk moduli are equal at T = 0 OK. 

T a ble 4 
Temperature derivatives of elastic constants from various sources evaluated at 300 OK. 

Units of 10-2 kbar deg- 1, P = 0 kbar 

S 
dOll/dT dO~/dT dO'/dT dOu/dT dBS/dT reference 

- 11.8 - 21.5 - 0.6 - 10.3 - 11.0 [18] 
- 4.7 - 13.7 - 0.3 - 9.3 - 4.3*) [19] 
- 4.75 - 14.1 - 0.42 - 9.8 - 4.2 present paper 

*) Value tabulated in Table 2 of [19] is - 3.1 but this appears to be in error. 

tion Us = C + 8Up ' where 

C = (~: Y'Z and 8 = + [ (dd~t + I). (7) 

and Us and up are the shock and particle velocities, respectively. The adiabatic 
quantities are then converted to isothermal quantities. The results for both 
B~ and (dB~/dP) at 300 oK are good (Table 7). 

5. Discussion 

One motivating force of the present work was the desire to test the validity of 
1. the bulk elastic instability concept proposed by Zener for b.c.c. metals, and 
2. a microscopic elastic instability argument, as possible mechanisms for mar
tensitic-type transformations. None of the three sets of data indicate a bulk elas
tic instability. All room pressure elastic constants have negative temperature 

-- - - -----
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Table 5 
Experimental pressure derivatives extrapolated to zero temperature compared to calculated 

pressure derivatives, dimensionless 

(calc) 
(calc) 
(exp) 

1.7 
1.0 
0.93 

dO'/dP 

0.25 
0.09 
0.05 

dB/dP 

3.5 
3.2 
3.3 

Table 6 

core radius 

1.36 
0.92 

Pressure derivatives of the shear elastic constants 044 

and 0' from Jain [27] and present work; dimensionless, 
T = 300 oK 

1.03 
1.08 

dO'/dP 

0.081 
0.08 

Table 7 

reference 

[27] 
present paper 

T '1' Values of Bo and (dBo /dPlr at 300 oK 

B't (kbar) (dB't/dPJ,r method 

110 ultrasonic [18] 
116 ultrasonic [19] 
115 3.56 ± 0.1 ultrasonic (present) 
112 3.60 ± 0.3 volumetric [41] 
109 3.5 shock [42] 

reference 

[30] 
[30] 

present paper 

coefficients to the lowest temperatures measured. What is more, at any pres
sure within the range of the present experiment.s, the temperat.ure coefficients of 
all of t.he elastic constants remain negative. 

The present data also indicates that the microscopic instability concept does 
not apply to the martensitic transformation in lithium. The data shows that at 
all temperature- pressure points within the region (85 to 300 oK , 1 bar to 3.5 kbar) 
all of the elastic constants have negative temperature and positive pressure 
derivatives. It is conceivable that although dO' /dP is positive at 3.5 khar it 
becomes negative at higher pressure, so that 0' does in fact become negative 
at a finite pressure such as one that might be present in a dislocation core. It 
is possible that the microscopic instability is not evident at low pressures. If 0' 
were to go to zero at 22 kbar as the microscopic instability theory suggests, then 
dO' /dPat 3.5 kbar should already be -0.14 kbar. At temperatures within 20 oK 
of the transformation , the quantity dO' /dP could not be continuously moni
tored , thus a small negative change, if it did exist, could well be masked by the 
absolute value measurement errors. Detection then would require accurate 
measurement of the second derivative, d 20' /dp2 , to considerably higher pres
sures than the 3.5 kbar of the present experiments. Even under the best of 
conditions the measurement of d2C' /dP2 is a difficult task. 

14* 
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6. Conclusions 

1. The present results, evaluated at T = 300 oK and atmospheric pressure, 
are not in sharp disagreement with previous elastic constant data published by 
Nash and Smith [18] and Slotwinski and Trivisonno [19J. 

2. The. present elastic constant temperature derivatives fall between those of 
Nash and Smith and of Slotwinski and Trivisonno. 

3. The pressure derivatives of 044 and 0' are in excellent agreement with 
those published by Jain [27] at 300 oK. 

4. When account is taken of the non-sphericity of the Fermi surface of 
lithium, the calculated zero-temperature elastic constants are in error by only 
a few percent when compared to the three sets of extrapolated experimental 
values. 

5. The present data on lithium indicate that the elastic constants above the 
martensitic transformation temperature do not show evidence of the impending 
transformation. There is as yet no evidence that either the bulk elastic in
stability concept proposed by Zener or the microscopic elastic instability put 
forward here apply to the martensitic transformation in lithium. 
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